Weak Curvature Conditions and Poincaré Inequalities

نویسنده

  • JOHN LOTT
چکیده

Abstract. We give sufficient conditions for a measured length space (X, d, ν) to admit local and global Poincaré inequalities. We first introduce a condition DM on (X, d, ν), defined in terms of transport of measures. We show that DM , together with a doubling condition on ν, implies a scale-invariant local Poincaré inequality. We show that if (X, d, ν) has nonnegative N -Ricci curvature and has unique minimizing geodesics between almost all pairs of points then it satisfies DM , with constant 2 . The condition DM is preserved by measured Gromov-Hausdorff limits. We then prove a sharp global Poincaré inequality for measured length spaces with N -Ricci curvature bounded below by K > 0.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lyapunov Conditions for Logarithmic Sobolev and Super Poincaré Inequality

We show how to use Lyapunov functions to obtain functional inequalities which are stronger than Poincaré inequality (for instance logarithmic Sobolev or F -Sobolev). The case of Poincaré and weak Poincaré inequalities was studied in [2]. This approach allows us to recover and extend in an unified way some known criteria in the euclidean case (BakryEmery, Wang, Kusuoka-Stroock ...).

متن کامل

Weak Curvature Conditions and Functional Inequalities

Abstract. We give sufficient conditions for a measured length space (X, d, ν) to admit local and global Poincaré inequalities, along with a Sobolev inequality. We first introduce a condition DM on (X, d, ν), defined in terms of transport of measures. We show that DM, together with a doubling condition on ν, implies a scale-invariant local Poincaré inequality. We show that if (X, d, ν) has nonne...

متن کامل

A Poincaré Inequality on Loop Spaces

We investigate properties of measures in infinite dimensional spaces in terms of Poincaré inequalities. A Poincaré inequality states that the L2 variance of an admissible function is controlled by the homogeneous H1 norm. In the case of Loop spaces, it was observed by L. Gross [17] that the homogeneous H1 norm alone may not control the L2 norm and a potential term involving the end value of the...

متن کامل

On Local Poincaré via Transportation

It is shown that curvature-dimension bounds CD(N,K) for a metric measure space (X, d,m) in the sense of Sturm imply a weak LPoincaré-inequality provided (X, d) has m-almost surely no branching points.

متن کامل

RICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM

Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005